1. Why is it important for the scheduler to distinguish I/O-bound programs from CPU-bound programs?

Ans:
I/O-bound programs have the property of performing only a small amount of computation before performing I/O. Such programs typically do not use up their entire CPU quantum. CPU-bound programs, on the other hand, use their entire quantum without performing any blocking I/O operations. Consequently, one could make better use of the computer's resources by giving higher priority to I/O-bound programs and allow them to execute ahead of the CPU-bound programs.

2. In Windows XP, how does the dispatcher determine the order of thread execution?

Ans:
The dispatcher uses a 32-level priority scheme to determine the execution order. Priorities are divided into two classes. The variable class contains threads having priorities from 1 to 15, and the real-time class contains threads having priorities from 16 to 31. The dispatcher uses a queue for each scheduling priority, and traverses the set of queues from highest to lowest until it finds a thread that is ready to run. The dispatcher executes an idle thread if no ready thread is found.

3. Explain the difference between response time and turnaround time. These times are both used to measure the effectiveness of scheduling schemes.

Ans:
Turnaround time is the sum of the periods that a process is spent waiting to get into memory, waiting in the ready queue, executing on the CPU, and doing I/O. Turnaround time essentially measures the amount of time it takes to execute a process. Response time, on the other hand, is a measure of the time that elapses between a request and the first response produced.